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Prostate Cancer Bone Metastases Promote Both
Osteolytic and Osteoblastic Activity
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Abstract Advanced prostate cancer is frequently accompanied by the development of metastasis to bone. In the
past, prostate cancer bone metastases were characterized as being osteoblastic (i.e., increasing bone density) based on
radiographs. However, emerging evidence suggests that development of prostate cancer bone metastases requires
osteoclastic activity in addition to osteoblastic activity. The complexities of how prostate tumor cells influence bone
remodeling are just beginning to be elucidated. Prostate cancer cells produce a variety of pro-osteoblastic factors that
promote bone mineralization. For example, both bone morphogenetic proteins and endothelin-1 have well recognized
pro-osteoblastic activities and are produced by prostate cancer cells. In addition to factors that enhance bone
mineralization prostate cancer cells produced factors that promote osteoclast activity. Perhaps the most critical pro-
osteoclastogenic factor produced by prostate cancer cells is receptor activator of NFkB ligand (RANKL), which has been
shown to be required for the development of osteoclasts. Blocking RANKL results in inhibiting prostate cancer-induced
osteoclastogenesis and inhibits development and progression of prostate tumor growth in bone. These findings suggest that
targeting osteoclast activity may be of therapeutic benefit. However, it remains to be defined how prostate cancer cells
synchronize the combination of osteoclastic and osteoblastic activity. We propose that as the bone microenvironment is
changed by the developing cancer, this in turn influences the prostate cancer cells’ balance between pro-osteoclastic and
pro-osteoblastic activity. Accordingly, the determination of how the prostate cancer cells and bone microenvironment
crosstalk are important to elucidate how prostate cancer cells modulate bone remodeling. J. Cell. Biochem. 91: 718-729,
2004. © 2003 Wiley-Liss, Inc.
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Bone is the most frequent site of prostate
carcinoma metastasis with skeletal metastases
identified at autopsy in up to 90% of patients
dying from prostate carcinoma [Abrams et al.,
1950; Rana et al.,, 1993; Bubendorf et al.,
2000]. Skeletal metastasis results in significant
complications including bone pain, impaired
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mobility, pathological fracture, spinal cord
compression, and symptomatic hypercalcemia
[Galasko, 1986; Coleman, 1997; Moul and
Lipo, 1999]. Despite advances in the diagnosis
and management of prostate carcinoma,
advanced disease with skeletal metastasis
remains incurable. Current therapeutic modal-
ities are mostly palliative, and include hormo-
nal therapy, pharmacological management of
bone pain, radiotherapy for pain, and spinal
cord compression [Szostak and Kyprianou,
2000], various chemotherapy regimens, and
the use of bisphosphonates to inhibit osteoclast
activity [Papapoulos et al., 2000]. In spite of the
severe complications of prostate carcinoma
skeletal metastasis, there has not been much
advance in the therapeutic arena to prevent or
diminish these lesions. It is critical that a solid
understanding of the pathophysiology of pros-
tate carcinoma skeletal metastatic process is
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developed to provide the basis for creating
strategies to prevent or diminish their occur-
rence and associated complications.

There are many challenges that encompass
determining the mechanisms that contribute to
the selective development of CaP in bone [Lange
and Vessella, 1998; Rosol, 2000]. These include
mechanisms of homing to bone and tumor cell
attachment at the bone endothelial site. How-
ever, once in the bone, CaP tumors have patho-
biology that appears to be somewhat unique to
cancer skeletal metastases. Specifically, CaP
skeletal metastases are most often radiogra-
phically characterized as osteoblastic (.e.,
increased mineral density at the site of the
lesion) as opposed to osteolytic. Other tumors,
such as breast cancer, can form osteoblastic
lesions; however, these occur less frequently
[Munk et al., 1997; Yamashita et al., 2000]. In
spite of the radiographic osteoblastic appear-
ance it is clear from histological evidence that
CaP metastases form a heterogeneous mixture
of osteolytic and osteoblastic lesions although
osteoblastic lesions are predominant [Urwin
et al., 1985; Percival et al., 1987; Berruti et al.,
1996; Vinholes et al., 1996; Roudier et al., 2000].
Recent evidence shows that osteoblastic metas-
tases form on trabecularbone at sites of previous
osteoclastic resorption, and that such resorp-
tion may be required for subsequent osteoblas-
tic bone formation [Carlin and Andriole, 2000;
Zhang et al., 2001]. These findings suggest that
CaP induces bone production through an overall
increase in bone remodeling, which in the non-
pathologic state is a balance between osteoclast
resorption of bone, followed by osteoblast-medi-
ated replacement of resorbed bone (reviwed in
Boyce et al., 1999a; Karsenty, 2000; Parfitt,
2000). The mechanisms through which CaP
cells promote bone mineralization or bone
resorption remain poorly understood. Dissect-
ing these mechanisms should help identify
molecular targets for therapeutic approaches
to prevent the damaging effects of CaP on the
skeleton and their associated complications.

THE PRO-OSTEOBLASTIC NATURE
OF PROSTATE CANCER

Histomorphometric evidence indicates that
sites of prostate carcinoma bone metastases
often have microscopic evidence of increased
bone production including increased osteoid
surface, osteoid volume, and mineralization

rates [Charhon et al., 1983; Clarke et al., 1993].
The histological findings are consistent with
clinical evidence that demonstrates increased
systemic markers of both bone production in
prostate carcinoma patients [Maeda et al., 1997;
Demers et al., 2000]. However, evidence that
osteoclast activity occurs is also found, which
suggests that prostate carcinoma induces bone
production through an overall increase in bone
remodeling. In the case of prostate carcinoma, it
appears the induction of osteoblast-mediated
mineralization eventually outweighs the incre-
ase in osteoclast resorption resulting in an over-
all formation of osteoblastic lesions. Although it
would seem that the increased bone production
would not decrease the bones mechanical pro-
perties (i.e., its strength) it actually weakens
the bone for the following reasons; mature,
healthy bone is formed of lamellar bone, which
consists of collagen bundles that are organized
in a tightly packed linear fashion resulting in
optimum bone strength. In contrast, prostate
carcinoma induces production of woven bone,
which is composed of loosely packed, randomly
oriented collagen bundles that produce bone
with suboptimal strength [Blomme et al., 1999;
Rosol, 2000]. The combination of inferior bone
production and underlying osteolysis leads to a
predisposition to fracture.

The mechanisms through which prostate
carcinoma cells promote bone mineralization
remain poorly understood. However, prostate
carcinoma cells produce a variety of factors that
have direct or indirect osteogenic properties
(Table I) (reviewed in Goltzman et al., 1992;
Yoneda, 1998; Boyce et al., 1999b; Deftos, 2000).
Some of these factors, such as bone morphoge-
netic proteins (BMP) [Harris et al., 1994;
Autzen et al., 1998; Hullinger et al., 2000] and
enodothlin-1 (ET-1) [Nelson et al., 1995] may
directly stimulate differentiation of osteoblast
precursors to mature mineral-producing osteo-
blasts [Kimura et al., 1992] or induce osteoblast
protein production [Hullinger et al., 2000].
Other factors such as parathyroid hormone-
related protein (PTHrP) may work through
inhibition of osteoblast apoptosis) [Karaplis
and Vautour, 1997; Cornish et al., 1999].
Additionally, there are proteins that may work
indirectly to enhance bone production, such as
the serine proteases, prostate specific antigen
(PSA), and urinary plasminogen activator
(uPA), which can activate latent forms of osteo-
genic proteins, such as transforming growth
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TABLE 1. Osteogenic Factors Produced by Cancer Cells

Factor

Reference

Bone morphogenetic proteins (BMP)
Endothelin-1 (ET-1)

Insulin-like growth factors (IGF)
Interleukin-1 and -6

Osteoprotegerin (OPG)

Parathyroid hormone-related peptide (PTHrP)
Transforming growth factor-B(TFG-)
Urinary plasminogen activator (urokinase)

[Bentley et al., 1992; Hullinger et al., 2000]

[Nelson et al., 1995; Nelson and Carducci, 2000]
[Perkel et al., 1990; Pirtskhalaishvili and Nelson, 2000]
[Taguchi et al., 1998; Le Brun et al., 1999]

[Guise, 2000; Honore et al., 2000]

[Karaplis and Vautour, 1997; Cornish et al., 1999]
[Killian et al., 1993]

[Goltzman et al., 2000]

factor-p (TFG-P) [Killian et al., 1993; Rabbani
et al., 1997]. Finally, some molecules, such as
osteoprotegerin (OPG) [Simonet et al., 1997,
Guise, 2000; Honore et al., 2000; Lee et al., 2003]
and ET-1 (in a dual role with its osteoblast-
stimulating activity) [Chiao et al., 2000] can
enhance osteosclerosis through inhibiting
osteoclastogenesis. Other tumor types, such as
osteosarcoma, are also known to produce a
variety of osteoblastic factors [Wlosarski and
Reddi, 1987; Raval et al., 1996; Laitinen et al.,
1998]. With such a large number of factors, it is
difficult to determine which the key factor is,
and most likely several of these osteogenic
factors work in concert to produce maximal
bone production. We will highlight two of the
factors, BMP and endothelin-1 (ET-1), for which
there is currently the most evidence for a role in
prostate cancer-induced osteosclerosis.

BMP are members of the TFG- superfamily.
More than 30 BMPs have been identified to date
[Ducy and Karsenty, 2000]. While originally
discovered because of their ability to induced
new bone formation, BMPs are now recognized
to perform many functions, particularly in the
role of development, such as apoptosis, differ-
entiation, proliferation, and morphogenesis
(reviewed in Hogan, 1996; Reddi, 1997; Hall
and Miyake, 2000). BMPs are synthesized as
large precursor molecules that undergo proteo-
lytic cleavage to release the mature protein,
which form active hetero- or homodimers
[Wozney, 1992; Suzuki et al., 1997]. BMPs bind
to receptors (BMPR-IA and -IB) and a BMP
type II receptor (BMPR-II), which induces
Smad phosphorylation [Wrana, 2000] resulting
in modulation of gene regulation. Target genes
of BMPs include osteoblast proteins such as
OPG [Wan et al.,, 2001] and the osteoblast-
specific transcription factor Cbfa-1 [Tsuji et al.,
1998; Gori et al., 1999]. Several proteins that
antagonize BMP action have been identified.
For example, noggin and gremlin inhibit BMP-

2, -4, and -7 by binding to them [Zimmerman
etal., 1996; Merino et al., 1999; Abe et al., 2000].
Furthermore, the BMPs themselves regulate
their own inhibitors in an apparent negative
feedback mechanism [Nifuji and Noda, 1999;
Nifuji et al., 1999].

Many in vitro studies have demonstrated that
BMPs induce osteogenic differentiation includ-
ing the ability of BMP-7 (also called osteogenic
protein-1; OP-1) to induce osteogenic differen-
tiation of newborn rat calvarial cells and
rat osteosarcoma cells [Asahina et al., 1993;
Maliakal et al., 1994; Li et al., 1996]. The BMP’s
osteogenic properties appear to be specific to the
differentiation stage of the target cells. Specifi-
cally, BMPs can induce uncommitted stem cells
[Katagiri et al., 1990; Li et al., 1996; Yamaguchi
etal., 1996] and myoblasts [Katagiriet al., 1997]
to express osteoblast parameters such as alka-
line phosphatase or osteocalcin expression
[Ducy et al., 2000; Karsenty, 2000]; whereas,
BMPs do not stimulate mature osteoblasts or
fibroblasts [Knutsen et al., 1993; Yamaguchi
et al., 1996; Kim et al., 1997; Groeneveld and
Burger, 2000] to increase expression of these
proteins. Examination of genetically modified
mice provides further evidence of the impor-
tance of BMP in bone development. The bmp7
homozygous null condition in mice is a postnatal
lethal mutation and is associated with, in
addition to renal and ocular abnormalities,
retarded skeletal ossification [Jena et al., 1997].
In contrast, bmp6 null mice are viable and
fertile, and the skeletal elements of newborn
and adult mutants are indistinguishable from
wildtype [Solloway et al., 1998]. However, care-
ful examination of skeletogenesis in late gesta-
tion embryos reveals a consistent delay in
ossification strictly confined to the developing
sternum. Finally, mice with mutations of the
bmp5 gene have skeletal abnormalities and
inefficient fracture repair [Kingsley et al.,
1992]. Thus, taken together, these data provide
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evidence that BMPs are important regulators of
the osteogenesis. Thus, dysregulation of their
expression in the bone microenvironment would
most likely impact bone remodeling.

A few studies have examined the expression
of BMPs in normal and neoplastic prostate
tissues. Using Northern analysis, Harris et al.
[1994] examined for BMP-2, 3, 4, and 6 mRNA
expression in human normal prostate and pro-
state carcinoma cell lines. They found that nor-
mal human prostate predominantly expressed
BMP-4. The androgen-dependent non-meta-
static LNCaP human prostate carcinoma cell
line produced very low to undetectable levels of
BMPs. Whereas, the aggressive androgen-inde-
pendent PC-3 cell line expressed very high
levels of BMP-3 and slightly lower levels of
BMP-2, -4, and -6 compared to normal cells, but
much higher than LNCaP cells. In support of
these results, Weber et al. [1998], using PCR
analysis, identified 16 (73%) of 22 prostate
carcinoma samples were positive for BMP-7
mRNA compared to eight (57%) of 14 normal
prostate tissue samples. In another PCR based
analysis, Bentley et al. [1992], found that
several BMPs were expressed in both benign
and malignant prostate tissue and in the PC3
and DU145 prostate carcinoma cell lines.
BMP-6 expression was detected in the prostate
tissue of over 50% of patients with clinically
defined metastatic prostate adenocarcinoma,
but was not detected in non-metastatic or
benign prostate samples. In another study
focused on BMP-6 mRNA and protein expres-
sion, Barnes et al. [1995] observed that BMP-6
was produced by normal and neoplastic human
prostate (radical prostatectomy specimens and
human carcinoma cell lines DU145 and PC3).
However, BMP-6 mRNA and protein expression
was higher in prostate carcinoma as compared
with adjacent normal prostate, with higher-
grade tumors (Gleason score of 6 or more)
having greater BMP-6 immunostaining than
the lower-grade tumors (Gleason score of 4 or
less). These results were consistent with a later
study by Hamdy et al. [1997], who reported that
BMP-6 mRNA expression was detected exclu-
sively in malignant epithelial cells in 20 of 21
patients (95%) with metastases, in 2 of 11
patients (18%) with localized cancer, and unde-
tectable in eight benign samples. Futhermore,
BMP-7 mRNA levels were found to be higher in
prostate cancer skeletal metastases than in
bone itself [Masuda et al., 2003]. In addition to

BMPs, there have been several reports on
prostate carcinoma expression of BMPR, it
appears that as prostate carcinoma progress,
the cells down-regulate their own expression of
BMPRs [Ide et al., 1997a; Kim et al., 2000],
which may be a protective mechanism as it has
been demonstrated that BMP-2 can inhibit
prostate carcinoma cell proliferation [Ide et al.,
1997b]. Taken together, these observations
demonstrate that prostate carcinoma cells pro-
duce increasing levels of BMPs as they progress
to a more aggressive phenotype and suggest
that the upregulation of BMP expression in
prostate carcinoma cells localized in the bone is
a critical component of the mechanism of
development of osteoblastic lesions at prostate
carcinoma metastatic sites.

Endothelins

Osteoblastic metastases occur in most pros-
tate cancers and frequently in other common
malignancies, such as breast cancer [Guise and
Mundy, 1998]. Many tumor-associated factors
have been proposed as mediators of the dis-
organized new bone formation at sites of meta-
stases, including insulin-like growth factors
(IGF)-1 and -2, transforming growth factor
(TGF) B, prostate-specific antigen (PSA), uroki-
nase-type plasminogen activator (UPA), fibro-
blast growth factors (FGF)-1 and -2, BMPs,
and endothelin-1 (ET-1) [Achbarou et al., 1994;
Thalmann et al., 1994; Nelson et al., 1995, 1996,
1999; Gingrich et al., 1996].

Accumulating evidence implicate ET-1 in the
pathogenesis of osteoblastic metastases. Yana-
gisawa et al. [1988] originally purified ET-1
from endothelial cells. ET-1 is a potent vasocon-
strictor, belonging to a family of three 21-amino-
acid peptides, with a variety of functions [La
and Reid, 1995]. The endothelins mediate their
effects through endothelin A (ETA) and endo-
thelin B (ETB) receptors. ETA receptors bind
ET-1 with ten times greater affinity than ET-3
while the B receptor binds all three endothelins
with equal affinity.

ET-1 has multiple effects on bone cells. It
stimulates mitogenesis in osteoblasts, which
express both ETA and ETB receptors [Takuwa
et al., 1990; Stern et al., 1995]. ET-1 decreases
osteoclastic bone resorption and osteoclast
motility [Alam et al., 1992]. Immunohistochem-
istry of bone detected ET-1 in osteocytes,
osteoblasts, and osteoclasts [Sasaki and Hong,
1993a,b].



722 Keller and Brown

Nelson et al. [1995] suggested the link
between osteoblastic metastases, prostate can-
cer, and ET-1. They demonstrated that plasma
ET-1 concentrations were significantly higher
in men with advanced, hormone-refractory
prostate cancer with bone metastases compared
to men with organ-confined prostate cancer or
normal controls [Nelson et al., 1995]. However,
ET-1 concentrations were not correlated to
tumor burden in bone or to serum prostate-
specific antigen (PSA) concentrations.

Prostatic epithelium produces ET-1, and
high-affinity receptors are present throughout
the prostate gland [Nelson et al., 1995, 1996,
1999]. A majority of prostate cancers at primary
as well as at metastatic sites express ET-1.
Exogenous ET-1 increases the proliferation of
prostate cancer as well as augmenting the
mitogenic effects of IGF-1, -2; platelet-derived
growth factor (PDGF); epidermal growth factor
(EGF) and FGF-2 on prostate cancer cells.
These effects are mediated via ETA receptors
[Nelson et al., 1996]. ETB receptor expression
was decreased in cancerous compared to normal
prostate and was low in the prostate cancer cell
lines PC3, DU 145, and LNCaP.

Breast cancers also express ET-1 and are the
next most common tumor to cause osteoblastic
metastases. Human breast cancer cells MCF-7,
T47-D, and MDA-MB-231 have been shown to
express the endothelin-processing enzyme
necessary to convert preproET-1 to ET-1 [Patel
and Schrey, 1995; Schrey and Patel, 1995;
Yorimitsu et al., 1995; Patel et al., 1997]. Thus,
substantial data implicate ET-1 in the patho-
genesis of osteoblastic metastases due to pros-
tate and breast cancers. However, a direct
demonstration of a causal role for ET-1 in bone
metastasis has not previously been reported.
Questions remain about whether ET-1 has
effects on bone formation in vivo, about the
specificity of its effects, and about whether the
increase in ET-1 observed in patients with
prostate cancer represents a causative factor.

The bulk of evidence for a pro-osteoblastic
metastatic effect of ET-1 has been derived from
breast cancer skeletal metastases. Recent evi-
dence indicates that breast cancer lines (ZR-75-
1, MCF-7, and T47D) all cause osteoblastic
metastases in female nude mice and produce
ET-1[Yin et al., 2000]. Conditioned media from
these cell lines, as well as exogenous ET-1,
stimulated osteoblast proliferation and new
bone formation in cultures of mouse calvariae.

These effects were inhibited by nonselective and
ETA, but not ETB, receptor antagonists. Mice
inoculated with ZR-75-1 and treated with oral
ABT-627, a selective ETA receptor antagonist
(2 or 20 mg/kg/day), had significantly fewer
bone metastases compared with untreated ZR-
75-1-mice. Bone histomorphometry revealed
that the untreated ZR-75-1-mice had greater
total bone area as well as new bone area
compared with ABT-627-treated ZR-75-1-mice
at either dose. Tumor burden in bone was
significantly less in ABT-627-treated mice. In
contrast, there was no effect of ABT-627 on
osteolytic bone metastases caused by ET-1-
negative breast cancer, MDA-MB-231. ETA
and ETB expression, determined by RT-PCR,
revealed that ZR-75-1 expressed neither ETA
nor ETB while MDA-MB-231 expressed both.
There was no effect of ABT-627 on (1) in vitro
growth of ZR-75-1 or MDA-MB-231 or (2) in vivo
growth of ZR-75-1 or MDA-MB-231 mammary
fat pad tumors. These data indicate that the
effects of ABT-627 to inhibit osteoblastic metas-
tases are not direct effects on these tumor cells,
but rather directed against the osteoblastic
response of tumor-produced ET-1. Collectively
these data suggest that tumor-produced ET-1
likely has a major role in the establishment of
osteoblastic bone metastases by stimulating
osteoblast proliferation and new bone forma-
tion. In terms of prostate cancer, atrasentan, an
antagonist of ET-1 receptor A, partially re-
versed primary murine osteoblast proliferation
induced by prostate cancer cells [Fizazi et al.,
2003], suggesting that ET-1 may play a role
in vivo. Blockade of the ETA receptor may be
useful for prevention and the treatment of
osteoblastic bone metastases due to breast or
prostate cancer.

In addition to production of pro-osteoblastic
factors, prostate cancer cells themselves gain an
osteoblast-like phenotype. The initial evidence
for this possibility was shown in a study that
demonstrated C4-2B prostate cancer -cells
mineralized in vitro [Lin et al., 2001]. Further-
more, increased nuclear expression of the bone-
specific transcription factor Cbfal (also known
as Runx2, CCD, AML3, CCD1, OSF2) was found
in the C4-2B cells and blocking Cbfal activity
decreased the ability of C4-2B cells to miner-
alize in vitro. Additionally, mRNA and protein
of the osteoblast-active transcription factor
Cbfal were detected in prostate cancer tissues
and cell lines [Brubaker et al., 2003]. Finally, a
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specific Cbfal: OSE2 (an osteoblast-specific cis-
acting element present in the osteocalcin pro-
moter) complex could be formed with PC-3
nuclear extracts. These data suggest that
prostate cancer cells may promote osteosclero-
sis directly, although direct evidence of this has
not been provided to date.

In summary, a variety of factors may promote
the osteoblastic nature of prostate cancer bone
metastases. Most likely no individual factor is
responsible for prostate cancer-induced osteo-
sclerosis, but rather several factors work in
concert to induce both osteoblastogenesis and
osteoblast activity.

THE PRO-OSTEOLYTIC NATURE
OF PROSTATE CANCER

In healthy adults, the regulated destruction
(resorption or lysis) of normal lamellar bone
matrix by large multinucleated osteoclasts is
tightly coupled to the consequent formation of
new bone by osteoblasts, such that lysis and
formation are balanced (reviewed in Manolagas
and Jilka, 1995). However, in prostate cancer
bone metastasis, bone lysisis stimulated at sites
of tumor growth and excess woven bone is
synthesized [Clarke et al., 1991]. This results
in a general increase in both bone turnover and
volume, although woven bone has less collagen
and therefore less tensile strength than normal
and is more susceptible to fracture. Evidence
suggests that lysis is a prerequisite for the
establishment of tumor cells in bone [Roland,
1958; Nielsen et al., 1991], therefore under-
standing the regulation of bone resorption may
suggest mechanisms through which tumors can
develop in bone and may indicate novel ther-
apeutic targets.

In normal bone, osteoblastic cells regulate
osteoclastogenesis and osteoclast activity by
interacting with mononuclear hematopoietic
osteoclast precursors [Roodman, 1996]. The
molecular mediators of this interaction were
shown to be the osteoblast-expressed proteins,
OPG and receptor activator of NF«B ligand
(RANKL). Binding of RANKL to the osteoclast
precursor-expressed RANK initiates a cascade
of intracellular signals that culminates in the
acquisition and activation of the osteoclast
phenotype [Lacey et al., 1998; Yasuda et al.,
1998a]. The absolute requirement of this inter-
action for osteoclastogenesis was shown by
the generation of transgenic rankl —/— and

rank —/— mice that developed severely hyper-
dense bones due to an absence of osteoclasts
[Dougall et al.,, 1999; Kong et al.,, 1999].
Furthermore, administration of soluble extra-
cellular RANKL to mice resulted in hypercalce-
mia and reduced bone volume, concomitant
with a doubling of osteoclast size [Lacey et al.,
1998]. The soluble glycoprotein OPG regulates
excessive bone resorption by acting as a soluble
decoy receptor for RANKL [Simonet et al.,
1997], and therefore neutralizes its interaction
with RANK, abrogating osteoclast formation,
activation, and survival in vitro [Yasuda et al.,
1998a,b] and in vivo [Lacey et al., 1998]. The
crucial role of OPG in bone remodeling was
demonstrated using transgenic opg —/— mice,
which showed uncontrolled bone resorption and
severe osteoporosis [Mizuno et al., 1998]. These
studies suggest that the balance between
RANKL and OPG determines the extent of bone
resorption, in that a relative decrease in OPG
results in excessive resorption and a relative
increase in OPG inhibits resorption.

Recent work has shown that the expression of
OPG, RANKL, and/or RANK is dysregulated in
a number of cancers in bone, including osteo-
clastoma [Atkins et al., 2000] and prostate
cancer [Brown et al., 2001], suggesting that
these proteins may be involved in tumor-
mediated bone destruction. Breast cancer cell
lines were shown to express OPG and RANK but
not RANKL [Thomas et al., 1999]. However, co-
culture with hematopoietic bone marrow cells
and osteoblasts resulted in a net increase in
RANKL expression, suggesting an indirect
mechanism through which localized bone lysis
may occur in breast cancer bone metastasis, by
activation of osteoclast precursors [Thomas
et al., 1999]. This was supported using a murine
in vitro model in which interactions between
mouse breast cancer cells and bone marrow cells
similarly resulted in a net increase in RANKL
activity [Chikatsu et al., 2000]. The cancer—
stromal interaction is also critical in multiple
myeloma, where co-culture produced a net
increase in RANKL expression and in osteo-
clastogenesis that was inhibited by addition of
soluble RANK [Pearse et al., 2001]. The produc-
tion of active soluble RANKL by prostate cancer
cells in vitro has been implicated as a mechan-
ism through which prostate cancer cells can
directly initiate osteoclastogenesis and there-
fore stimulate bone resorption [Zhang et al.,
2001].
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Several exciting and provocative studies have
examined the therapeutic uses of soluble RANK
and OPG in the treatment of hematological and
solid tumors in bone. As a fusion protein with
human IgG, RANK has proven efficacious in the
inhibition of bone resorption in a mouse model
of humoral hypercalcemia of malignancy as
induced by PTHrP administration [Oyajobi
et al.,, 2001], and in the prevention of mye-
loma-induced osteoclastic bone destruction in a
SCID-human model [Pearse et al., 2001].
In vitro experiments treating osteoclastoma-
derived cells with OPG reduced the number of
mature osteoclasts and inhibited bone resorp-
tion [Atkins et al., 2001]. Dramatic decreases in
the numbers of mature osteoclasts and in the
size and/or number of lesions in bone were
observed following the treatment with OPG
of mice carrying human breast cancer cells
[Morony et al., 2001], murine multiple myeloma
[Croucher et al., 2001], and human prostate
cancer cells [Zhang et al., 2001]. In human
prostate cancer cells, OPG has been shown to be
a survival factor through its ability to inhibit
TRAIL-mediated apoptosis [Holen et al., 2002].
Importantly, treatment with OPG has also been
demonstrated to block pain-related behavior in
mice carrying bone cancers [Honore et al., 2000;
Luger et al.,, 2001]. Overall, these studies
suggest that in bone metastatic tumors, inhibi-
tion of the primary resorptive stage may be
sufficient to inhibit tumor establishment and
halt progression of disease, even in those tumors
that have primarily an osteoblastic phenotype.
However, one prostate cancer cell line, LAPC-9,
was demonstrated to not produce RANKL, but
rather produced OPG [Lee et al., 2003]. This cell
line produced osteoblastic tumor when injected
into mouse tibia. The osteoblastic tumors did
not appear to have osteoclastic activity during
their early development phase, but developed
osteoclastic activity by 6 weeks. These results
bring into question the requirement for osteo-
clastic activity for the initial establishment of
the prostate tumors in bone. Further support for
this possibility was the observation that a
bisphosphonate, zoledronic acid, did not dimi-
nish development of LAPC-9 cells injected into
the tibia of mice; whereas it did decrease
development of osteolytic PC-3 cells [Lee et al.,
2002]. While studies are at an early stage at
present, it appears that therapeutic targeting of
the OPG/RANKL/RANK proteins holds great
promise for at least therapy of bone metastases

and perhaps may prevent establishment and
progression of bone metastases.

A MODEL FOR PROSTATE CANCER’S
EFFECT ON BONE REMODELING

From these observations, we propose a model
for how prostate cancer cells influence bone
remodeling. In order to account the apparently
contrasting ability of prostate cancer cells to be
both pro-osteoblastic and pro-osteolytic several
aspects of the metastases need to be taken into
account. These include the bone microenviron-
ment the tumor cells are exposed to (reviewed in
Cooper et al., 2003) and the temporal progres-
sion of the cancer. Based on these parameters,
we propose (Fig. 1) that when prostate cancer
cells metastasize to bone, they initially induce
osteoclastogenesis and bone resorption. As bone
is broken down, the extracellular matrix
releases a variety of growth factors (reviewed
in Guise and Mundy, 1998 #8470) that act in a
paracrine fashion on the prostate tumor cells
and diminish their ability to induce osteoclas-
togenesis, while promoting their ability to grow
and induce osteoblastic activity. This model is
consistent with various observations including
the ability of anti-osteoclastogenic agents to
inhibit establishment of tumor in bone and the
mixture of osteolytic and osteoblastic features
identified in clinical prostate cancer bone
metastases, even within one patient. Unfortu-
nately, proving this hypothesis is challenging
for several reasons including that there are
currently no animal models that recapitulate
spontaneous clinical prostate cancer bone
metastases.

The biology of prostate cancer bone metasta-
sis has received increased attention in the last
few years. The resulting data point to a
complicated system with multiple interacting
proteins and pathways. Thus, while dissecting
individual protein factor pathways (e.g., BMPs)
is important, eventually a synthesis of how
these various pathways work together toimpact
bone remodeling will be necessary to provide a
comprehensive understanding of the biology of
prostate cancer bone metastases. Alongthisline
of thought, clearly the bone microenvironment,
which is under constant change from the
influence of tumor cells, plays a role in the
establishment and progression of prostate can-
cer bone metastases. Thus, future studies are
needed to define the complex cross-talk between



Prostate Cancer Metastases Induce Bone Remodeling 725

3
CaP

» Osteoblastic
Factors:
(e.g., BMP, ET-1)

Osteoclastic 1
Factors:

(e.g., RANKL, IL-6)

Growth factors ¢
(e.g., TGF-B)

Osteoclast

Old Lamellar Bone

Osteoblast

Osteoblast

Fig. 1. Model for how prostate cancer induces bone remodel-
ing. The prostate cancer cells initially (1) induce osteoclastogen-
esis and resorption of mature lamellar bone. As the bone matrix is
destroyed, it releases growth factors (2) that induce prostate
cancer cells’ growth and alter their phenotype. The changing
bone microenvironment, enhances the prostate cancer cells’

the bone microenvironment and the prostate
cancer cells. In order to reach these goals,
development of appropriate research tools, such
as animal models and cells lines, that recapitu-
late human prostate cancer bone metastasis
biology, are needed to advance the field.
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